
A multi-scale control-volume finite element method for
advection-diffusion equations.

Pavel Bochev1,∗, Kara Peterson, Mauro Perego

Computational Mathematics, MS1320, Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185

Abstract

We present a new multi-scale stabilized method for advection-diffusion equations, which com-
bines a Control Volume Finite Element (CVFEM) formulation of the governing equations with
a novel multi-scale approximation of the total flux. To define the latter we solve the governing
equations along suitable mesh segments under the assumption that the flux varies linearly along
these segments. This procedure yields second-order accurate fluxes on the edges of the mesh.
Then we use curl-conforming elements of the same order to lift these edge fluxes into the mesh
elements. In so doing we obtain a stabilized CVFEM formulation that is second-order accurate
and does not require mesh-dependent stabilization parameters. Several standard advection tests
illustrate the computational properties of the new method.

Keywords: Advection-diffusion, Control Volume Finite Element Method, multi-scale flux, edge
elements, Scharfetter-Gummel upwinding.

1. Introduction

We consider the numerical solution of the scalar advection-diffusion equation
−∇ · F(φ) = f in Ω

F(φ) = (ε∇φ− uφ) in Ω

φ = g on Γ

(1)

where Ω ⊂ <n, n = 2, 3 is a bounded domain with Lipschitz-continuous boundary Γ = ∂Ω, ε
is a diffusion coefficient, u is advective velocity, f is a given right hand side and g is a given
boundary data. For brevity we restrict attention to Dirichlet boundary conditions. Extension of
the approach to Neumann and mixed Neumann-Dirichlet boundary conditions is straightforward.

When f = 0, the first equation in (1) implies that the total flux through the boundary of an
arbitrary volume in Ω equals zero. Accurate and physically consistent numerical solution of (1)
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requires numerical methods that preserve some notion of this local conservation property. In
addition, these methods should remain stable in the advection-dominated regime, i.e., when ε is
small relative to u. This regime may lead to the appearance of internal and/or boundary layers in
the solution of (1). If the grid is not fine enough to resolve these layers, numerical solutions can
develop spurious oscillations [17].

In this paper we present a new parameter-free stabilized method for (1), which combines a
Control Volume Finite Element (CVFEM) formulation [3] of the governing equations with a
novel multi-scale approximation of the flux F(φ). We choose CVFEM as a foundation for our
method because it combines the straightforward nodal reconstruction of Galerkin methods with
the local conservation properties of finite volume schemes. However, our CVFEM stabilization
strategy differs substantially from published approaches [25, 24], which use the same perturba-
tion functions as the Streamline Upwind Petrov-Galerkin (SUPG) method [7, 15].

Resulting Streamline Upwind Control Volume (SUCV) methods are first-order accurate and
inherit the mesh-dependent SUPG stabilization parameter τ. The choice of this parameter is
critical for the accuracy and stability of the approximate numerical solution. Yet, because this
parameter depends on mesh constants that are known only in special cases [13], and because
different solution features generally require different definitions of this parameter, finding the
best possible τ for a given problem remains an open question [18, 8].

In contrast, we stabilize CVFEM through a multi-scale flux approximation, which does not in-
volve tunable mesh-dependent parameters and is defined by an H(curl) lifting of one-dimensional
edge fluxes into the elements. This stabilization strategy originated in [6] where we combined a
classical Scharfetter-Gummel upwinding to define first-order accurate fluxes on mesh edges with
the lowest-order curl-conforming Nedelec space [20, 21] to expand these fluxes into the elements.
In so doing we obtained a parameter-free first-order accurate exponentially-fitted CVFEM2 for
(1).

The principal goal of this paper is to develop further the H(curl) stabilization approach and
demonstrate its potential by extending it to a second-order accurate CVFEM formulation. Suc-
cinctly, we consider H(curl) lifting of second-order accurate edge fluxes by a curl-conforming
edge element space of the same order. Since construction of the latter is well-understood for a
wide range of elements shapes [20, 21, 9, 2], a key juncture towards our goal is the definition of
second-order edge fluxes that match the vectorial degrees-of-freedom. To this end, we solve one-
dimensional versions of the governing equations on suitable line segments. Specifically, given a
line segment s containing a pair of of vectorial degrees-of-freedom we construct a matching pair
of one-dimensional fluxes as follows. First, we restrict (1) to the segment and find its general
solution under the assumption that F is linear along s. Then we select a particular solution by
requiring that the former interpolates the nodal values of φ along segment s. Finally, we use this
particular solution to compute the flux at the two halves of the segment.

This strategy can be viewed as “bootstrapping” of the classical Scharfetter-Gummel upwind-
ing. Indeed the latter solves (1) on individual mesh edges under the assumption that F = const
to obtain first-order fluxes relating the values of φ at the endpoints of a single edge. In con-
trast, we assume that F varies linearly along segments comprising pairs of edges and solve (1)
on these segments. In so doing we obtain second-order accurate edge fluxes, which relate the
nodal values of φ on pairs of edges. We show that these fluxes are perturbations of the classical
Scharfetter-Gummel fluxes by higher-order terms, which motivates the term “multi-scale flux”
for their H(curl) lifting into the elements.

2For a related finite element method and its analysis we refer to [5] and [4].
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Broadly speaking our approach belongs in a category of numerical methods which use exact
analytic solutions of simplified governing equations to improve the stability and accuracy of the
numerical solutions. What sets our approach apart from published work is the manner in which
the information from the analytical solution is incorporated in the numerical scheme. Typically,
existing methods use analytic solutions to define enriched, multi-scale or exponentially fitted
shape functions for the finite element method, see, e.g., [14, 12, 11, 26, 22, 1] for representative
examples of this approach. These shape functions are then used to enrich or even completely
replace standard piecewise polynomial bases in a weak finite element formulation of the problem.

In contrast, our approach does not involve enrichment or substitution of the standard nodal
shape functions. Instead, we use the analytic solutions to approximate directly the flux of the
exact solution by virtue of curl-conforming edge elements. In so doing we avoid the need to in-
troduce stabilizing parameters whose purpose is to “blend” together distinct discretization spaces
into a single stable approximation.

We have organized the rest of the paper as follows. Section 1.1 reviews the relevant nota-
tion and Section 2 presents the new multi-scale CVFEM. Section 3 provides a brief asymptotic
analysis of the multi-scale flux approximation. Section 4 uses manufactured solutions and sev-
eral standard advection test problems to illustrate numerically the quantitative and qualitative
properties of the method. It also briefly describes the assembly process for the new method.

1.1. Notation
In this paper Ω ⊂ <n, n = 2, 3 is a bounded open region with a Lipschitz-continuous boundary

Γ, Hk(Ω) is a Sobolev space of order k, Hk
0(Ω) is the subspace of functions in Hk(Ω) whose traces

vanish on Γ, L2(Ω) = H0(Ω), and H(curl,Ω) is the space of all vector fields in L2(Ω)n whose curl
belongs in L2(Ω)2n−3.

Finite element partition. For clarity we formulate the new multi-scale stabilized CVFEM in two-
dimensions using a conforming partition Kh(Ω) of Ω into quadrilateral elements Ks. Appendix
B briefly discusses extensions to three-dimensions. The medians of an element Ks ∈ Kh(Ω)
subdivide it into four quadrilateral sub-elements Ksi , i = 1, . . . , 4. The set of all sub-elements
forms another conforming partition K̃h(Ω) of Ω into quadrilateral elements. The set of all vertices
in the sub-element partition coincides with the union of all vertices, centers and side midpoints of
the elements in Kh(Ω); see Fig. 1(a). We refer to this set as the set of all mesh points {pi}. Every
two adjacent points pi and pj on an element side or a median define a sub-edge ei j; see Fig. 1 (b).
Two collinear sub-edges ei j and e jk, sharing a point pj form a segment si jk with vertices pi and
pk; see Fig. 1 (c). We orient a segment si jk by choosing the order of pi and pk. The sub-edges ei j

and e jk comprising the segment inherit its orientation. For instance, if pi is the first vertex of si jk

and pk is its second vertex, then pi is the first vertex of ei j and pk is the second vertex of e jk

For clarity, whenever appropriate we also use the more compact notation eα and sβ, where α
and β are multi-indices containing the numbers of the endpoints of eα, and the endpoints and the
midpoint of sβ, respectively.

We denote the sets of points, sub-edges, segments, and elements on Kh(Ω), intersecting with
an entity ω ⊂ Ω, by P(ω), E(ω), S (ω) and K(ω), respectively. For instance, P(Ω) is the set of
all interior points in Kh(Ω), E(Ksi ) are the sub-edges belonging to a sub-element Ksi ⊂ Ks, and
S (Ks) is the set of all segments in Ks. The set K̃(ω) contains all sub-elements intersecting ω.

Given a point pj ∈ P(Ω) we define the associated control volume C j by connecting the
barycenter of every sub-element Ksi ∈ K̃(pj) with the midpoints of the two sub-edges in
E(pj) ∩ E(Ksi ); see Fig. 2. If Kh(Ω) is rectilinear, then the set of all control volumes forms a
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Figure 1: Mesh nomenclature: (a) a finite element Ks ∈ Kh(Ω), its sub-elements and its points ; (b) element
sub-edges and vectorial finite element degrees-of-freedom (diamonds); (c) element segments
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Figure 2: Connecting the barycenter of every sub-element Ksi ∈ K̃(pj) (squares) with the midpoints of
the two sub-edges in E(pj) ∩ E(Ksi ) (diamonds) defines a median bisector control volume associated with
mesh point pj.

topologically dual rectilinear mesh partition. In this case, the sides of the control volumes are
dual to the sub-edges on the primal grid Kh(Ω). In general though, the boundary of C j is a poly-
gon with 2 × |E(pj)| sides; see Fig. 2. We denote the union of the two sides connected to the
midpoint of sub-edge ei j by S i j. Thus,

∂C j =
⋃

ei j∈E(pj)

S i j

For instance, if Kh(Ω) is logically Cartesian then the control volumes associated with interior
mesh points are octagons.

Finite element spaces. To construct a multi-scale approximation of the flux F(φ) in Section 2.2
we first define second-order accurate fluxes on element sub-edges and then expand them into
the elements by using curl-conforming finite element spaces. Consequently, the number of edge
element degrees-of-freedom per element must match the number of element’s sub-edges. A
quadrilateral has 12 sub-edges and so, the appropriate space to perform the lifting of the edge
fluxes in this case is the second-order Nedelec edge element space of the first kind [20]. We
denote this space by Eh(Ω) and { ~Wα} is the corresponding set of basis functions, indexed by a
sub-edge. For the purposes of this paper it is convenient to work with basis functions having the
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property that3

~Wα · tβ
∣∣∣∣
mβ

= δ
β
α ∀eβ, eα ∈ E(Ω) , (2)

where mβ is the midpoint of sub-edge eβ.
For the approximation of φ we can use any finite element space that is second or higher or-

der accurate, and whose degrees-of-freedom are located at the mesh points {pi}. Two obvious
choices are a standard C0 biquadratic space defined with respect to Kh(Ω) and a standard C0

bilinear space defined with respect to the sub-element mesh K̃h(Ω).
Both spaces have the same number of degrees-of-freedom and lead to algebraic problems of

the same size. The first choice could be useful if one does not wish to establish a data structure
for the sub-element mesh K̃h(Ω), but it would not take full advantage of the third-order accuracy
of the biquadratic element. The bilinear finite element matches the accuracy of the multi-scale
flux approximation and so we choose to state the method using this space. Thus, in what follows
Ñh(Ω) is the standard C0 bilinear nodal space defined with respect to the sub-element mesh
K̃h(Ω), Ñh,0(Ω) is the subspace of Ñh(Ω) containing functions that vanish on Γ, and {Ñi}pi∈P(Ω)

is the standard Lagrangian nodal basis, i.e., Ñi(xi) are C0, piecewise bilinear functions such that

Ñi(pj) = δ
j
i .

We denote the coefficient vector of a finite element function φh ∈ Ñh(Ω) by φ = (φ1, . . . , φp)
where p = |P(Ω)| is the number of all points in the mesh.

2. Stabilized multi-scale CVFEM

The new parameter-free stabilized CVFEM combines a CVFEM approach [3] with a new
multi-scale approximation of the total flux F(φ). In §2.1 we use the CVFEM framework to derive
a general formulation of our method. Section 2.2 explains the construction of the multi-scale flux
approximation.

2.1. A general CVFEM formulation of the model problem
For simplicity we restrict attention to formulations which impose the Dirichlet boundary con-

ditions strongly, i.e., we seek finite element solutions of (1) in the form

φh(x) =
∑

pi∈P(Ω)

φiÑi(x) +
∑

pj∈P(Γ)

g(pj)Ñ j(x) . (3)

This form corresponds to a partition φ = (φ0,φg) of the finite element degrees of freedom into
a vector of unknown nodal coefficients φ0 with dimension p0 = |P(Ω)|, associated with the
interior points pi ∈ P(Ω), and a vector of nodal boundary values φg with dimension pg = |P(Γ)|
containing the values of g(x) at the boundary points pi ∈ P(Γ). Succinctly, the second term is the
finite element interpolant Ig of the given boundary data, whereas the first term defines a finite
element function φh,0 ∈ Ñh,0(Ω).

With strongly imposed Dirichlet boundary conditions a CVFEM formulation for (1) involves
only the control volumes associated with the interior points4 of Kh(Ω); see Fig. 3. Accordingly,

3Appendix A provides detailed definitions of the edge basis functions.
4In the general case of mixed boundary conditions the dual mesh also includes control volumes associated with the

points on the Neumann part of the boundary.
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Figure 3: Quadrilateral grid Kh(Ω) comprising two elements Ks and Kt gives rise to a sub-element grid
K̃h(Ω) with 8 sub-elements. The control volumes Ci, C j and Ck are associated with the interior points
P(Ω) = {pi, pj, pk} of Kh(Ω). The volumes Ci and Ck are entirely contained in the interiors of Ks and Kt,
respectively, whereas C j intersects these two elements.

to obtain the “weak” CVFEM form of (1) one integrates the first equation in (1) on these control
volumes and then applies the Divergence Theorem to obtain the following system of n0 = |P(Ω)|
“weak” equations: ∫

∂Ci

F(φ) · ndS =

∫
Ci

f dV ∀pi ∈ P(Ω) . (4)

Transformation of volume integrals into surface integrals reduces the order of differentiation
from two to one and so, the “weak” equations (4) are well-defined for finite element functions in
Nh(Ω). Restriction of (4) to Ñh(Ω) then yields a standard nodal CVFEM on the sub-element grid
K̃h(Ω): seek a finite element function φh ∈ Ñh(Ω), given by (3), such that∫

∂Ci

F(φh) · ndS =

∫
Ci

f dV ∀pi ∈ P(Ω) . (5)

It is easy to see that (5) is a p0×p0 system of linear algebraic equations Aφ0 = f for the unknown
coefficient vector φ0, where

Ai j =

∫
∂Ci

F(Ñ j) · ndS and fi =

∫
Ci

f dV −
∫
∂Ci

F(Ig) · ndS . (6)

Similar to Galerkin methods for (1) in the advection-dominated regime solutions of (5) may
become unstable and develop spurious oscillations. These oscillations are brought about by the
fact that when the mesh does not resolve solution layers the nodal approximation of the total flux

F(φh) = ε∇φh − uφh =
∑

pj∈P(Ω)

φ j

(
ε∇Ñ j(x)− uÑ j(x)

)
(7)

is not an accurate representation of the advection of φ between neighboring nodes [23].
In this paper we propose to stabilize (5) by replacing the nodal flux F(φh) with an H(curl)-

conforming multi-scale approximation

Fh(φ) =
∑

eξ∈E(Ω)

Fξ(φ) ~Wξ , (8)
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Figure 4: A segment s123, its points p1, p2 and p3, its sub-edges e12 and e23, and their midpoints m12 and
m23.

where Fξ(φ) are second-order fluxes specified at the midpoints mξ of the element sub-edges and
~Wξ are the Nedelec basis functions (2). We note that, although (8) defines a global H(curl)-
conforming field in terms of vectorial edge element basis functions, it operates on scalar un-
knowns associated with the mesh points rather than the mesh edges.

Using Fh(φ) in lieu of F(φh) yields the new multi-scale CVFEM formulation: seek φh with
coefficients φ = (φ0,φg) such that∫

∂Ci

Fh(φ) · ndS =

∫
Ci

f dV ∀pi ∈ P(Ω) . (9)

This formulation is also equivalent to a p0 × p0 system of linear algebraic equations for the
unknown coefficient vector φ0. Section 4 provides further information about the assembly of
these equations.

A few comments about the multi-scale CVFEM (9) are now in order. In Section 2.2 we will
derive the one-dimensional edge fluxes Fξ using analytic solutions of the model equations along
mesh segments. The resulting expressions relate the nodal values of φh along the segments with-
out a reference to a particular nodal finite element basis. As a result, both Fξ and the multi-scale
flux Fh are completely independent of the choice of a nodal finite element space and act directly
on the nodal degrees of freedom. To emphasize this fact we write these fluxes as functions of the
vector φ of nodal values rather than the finite element function φh(x).

As a consequence, the CVFEM formulation (9) does not require any notion of a nodal finite
element space for φ and if the approximate solution is not needed in locations other than the
mesh points, one can completely forego such a space.

Remark 1. A weak CVFEM formulation of a transient version of the model problem (1) involves
an additional term with the integral of the time derivative of φ over a control volume. Spatial
discretization of such a weak form does require some means of approximating this integral. Al-
though this can be accomplished in many different ways, the most straightforward approach is
to discretize φ by nodal finite elements.

2.2. Multi-scale flux approximation
We consider a single mesh segment sα with length hα = |sα| and a natural parameter s. Without

loss of generality we may assume that α = (1, 2, 3). Accordingly, the points on this segment are
p1, p2 and p3, the vector of the unknown nodal coefficients is φ = (φ1, φ2, φ3), and the sub-
edges comprising the segment are e12 and e23, respectively; see Fig. 4. We recall that p2 is the
midpoint of sα. Thus, in terms of the natural parameter p1 = 0, p2 = hα/2, p3 = hα, m12 = hα/4,
m23 = 3hα/4, and |e12| = |e23| = hα/2. We assume that s123 is oriented by choosing p1 as its

7



first vertex and p3 as its second vertex. Since sub-edges inherit the orientation of their parent
segment, it follows that p1 and p2 are the first vertices of e12 and e23, respectively.

The multi-scale flux approximation (8) requires second-order fluxes F12(φ) and F23(φ) spec-
ified at sub-edge midpoints m12 and m23, respectively. We proceed to construct these fluxes
according to the following procedure. Let

uα =
1
hα

∫
sα

u · tα ds and εα =
1
hα

∫
sα
ε ds

denote the mean segment velocity and diffusion. Given a real function ϕ : sα 7→ < we define its
segment flux according to the formula

Fs(s) = εαϕ
′(s)− uαϕ(s) . (10)

Assume now that ϕ(s) is such that

a) ϕ(s) interpolates the nodal values along the segment, i.e.,

ϕ(0) = φ1, ϕ(hα/2) = φ2, ϕ(hα) = φ3, and (11)

b) The segment flux of ϕ(s) is a linear function, i.e.,

Fs(s) = A + Bs . (12)

Given such a scalar function, the values of its segment flux at sub-edge midpoints define the
sub-edge fluxes, i.e.,

F12(φ) = Fs(hα/4) and F23(φ) = Fs(3hα/4) . (13)

Proposition 1. Assume that uα , 0. Then, conditions (11)–(12) define a unique function

ϕ(s) = C1(φ)esuα/εα + C2(φ) + sC3(φ) (14)

where

C1(φ) =
φ1 − 2φ2 + φ3

(epα − 1)2 ; C2(φ) = φ1 −C1; C3(φ) = −2
epαφ1 − (epα + 1)φ2 + φ3

hα(epα − 1)
, (15)

and

pα =
uα hα
2εα

is the segment’s Péclet number.
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Proof. Assumption (12) implies that

F′′s (s) = εαϕ
′′′(s)− uαϕ′′(s) = 0 .

It is straightforward to check that a general solution of this third-order equation is given by (14).
We determine the coefficients of this solution by requiring that interpolating conditions (11) hold
for ϕ(s). Assuming that the mean edge velocity is not equal to zero, the resulting 3 × 3 linear
system has a unique solution given by (15). �

Suppose now that ϕ(s) is the function (14) with coefficients set according to (15). Direct
calculation shows that its segment flux is the following linear function:

Fs(s) = −uαC2(φ) + (εα − suα)C3(φ) .

We set the sub-edge fluxes according to (13), i.e.,

F12(φ) = −uαC2(φ)+(εα−
hα
4

uα)C3(φ) and F23(φ) = −uαC2(φ)+(εα−
3hα
4

uα)C3(φ). (16)

The following proposition provides further information about the multi-scale structure of these
fluxes.

Proposition 2. The sub-edge fluxes can be written as

F12(φ) = Φ(φ1, φ2) + γ(φ) and F23(φ) = Φ(φ2, φ3) + γ(φ) (17)

where

Φ(φi1 , φi2 ) = uα

(
φi2 − epαφi1

epα − 1

)
(18)

and

γ(φ) = εα

(
1− pα

2
· (epα + 1)

(epα − 1)

)
C3(φ) .

Proof. To prove the first identity in (17) we rewrite C2(φ) as follows:

C2(φ) = φ1 −
φ1 − 2φ2 + φ3 ± epαφ1 ± epαφ2

(epα − 1)2

= φ1 −
epαφ2 − epαφ1 − (φ2 − φ1)

(epα − 1)2 − epαφ1 − (epα + 1)φ2 + φ3

(epα − 1)2

= φ1 −
φ2 − φ1

(epα − 1)
+

hα
2(epα − 1)

(
−2

epαφ1 − (epα + 1)φ2 + φ3

hα(epα − 1)

)
=

epαφ1 − φ2

(epα − 1)
+

hα
2(epα − 1)

C3(φ) .

(19)

Inserting the last identity into the definition of F12 in (16) yields the first formula in (17). To
prove the second formula we start from the result in (19):

C2(φ) =
epαφ1 − φ2 ± epαφ2 ± φ3

(epα − 1)
+

hα
2(epα − 1)

C3(φ)

=
epαφ2 − φ3

(epα − 1)
+

epαφ1 − (epα + 1)φ2 + φ3

(epα − 1)
+

hα
2(epα − 1)

C3(φ)

=
epαφ2 − φ3

(epα − 1)
+

hα
2

(
1

(epα − 1)
− 1

)
C3(φ) .

9



Inserting the last result into the definition of F23 in (16) yields the second formula in (17) and
completes the proof. �

This proposition reveals a connection between sub-edge fluxes F12 and F23 and classical
Scharfetter-Gummel edge fluxes. Indeed, the terms

Φ(φ1, φ2) = uα

(
φ2 − epαφ1

epα − 1

)
and Φ(φ2, φ3) = uα

(
φ3 − epαφ2

epα − 1

)
in (17) are exactly the same as one would obtain from applying the Scharfetter-Gummel formula
independently on sub-edges e12 and e23, respectively; see e.g., [6, 5]. Succinctly, Proposition
2 states that the sub-edge fluxes are sums of classical Scharfetter-Gummel fluxes defined on the
sub-edges, and acting only on the endpoints of these sub-edges, and a correction term γ(φ) acting
on all points in the segment. This hierarchical structure of the sub-edge fluxes motivates calling
them and the resulting total flux approximation (8) “multi-scale”.

3. Asymptotic analysis of the multi-scale flux

This section examines the multi-scale flux approximation (8) to identify the mechanisms re-
sponsible for stabilizing the CVFEM. Assuming the same numbering and orientation as in Sec-
tion 2.2 consider the restriction of Fh(φ) to a segment sα

Fh(φ)|sα =
∑

eξ∈E(sα)

Fξ(φ) ~Wξ|sα = F12(φ) ~W12|sα + F23(φ) ~W23|sα .

Without loss of generality we may assume that tα = i. Then, using expressions (A.2) for the
“horizontal” basis functions it is not hard to see that

~W12|sα = −i
2
hα

(
s− 3hα

4

)
= i

(
3
2
− 2s

hα

)
and ~W23|sα = i

2
hα

(
s− hα

4

)
= i

(
2s
hα
− 1

2

)
, (20)

respectively. Consequently, restriction of the multiscale flux along a mesh segment is given by a
linear function

Fh(φ)|sα = i
(
F12(φ)

(
3
2
− 2s

hα

)
+ F23(φ)

(
2s
hα
− 1

2

))
.

To analyze this function we rewrite the sub-edge fluxes and the multi-scale correction term into
more convenient forms as follows. Let qα = pα/2. Using the identities

1
e2a − 1

=
1
2

(coth a− 1) and
e2a

e2a − 1
=

1
2

(coth a + 1)

the classical Scharfetter-Gummel fluxes assume the form

Φ(φi1 , φi2 ) =
uα
2

(
φi2 (coth qα − 1)− φi1 (coth qα + 1)

)
for {i1, i2} = {1, 2}, {2, 3}, whereas the multi-scale correction term transforms to

γ(φ) = −εα
hα

(1− qα coth qα)
(
φ1(coth qα + 1)− 2φ2 coth qα + φ3(coth qα − 1)

)
.

10



Note that

Φ(φ1, φ2) = −uα
φ1 + φ2

2
+

uα
2

coth(qα)(φ2 − φ1)

= −uα
φ1 + φ2

2
+ εαqα coth(qα)

(φ2 − φ1)
hα/2

= −uα
φ1 + φ2

2
+ εα

(φ2 − φ1)
hα/2

+ εα
(
qα coth(qα)− 1

) (φ2 − φ1)
hα/2

,

and analogously

Φ(φ2, φ3) = −uα
φ2 + φ3

2
+ εα

(φ3 − φ2)
hα/2

+ εα
(
qα coth(qα)− 1

) (φ3 − φ2)
hα/2

.

The terms

f12 := −uα
φ1 + φ2

2
+ εα

(φ2 − φ1)
hα/2

and f23 := −uα
φ2 + φ3

2
+ εα

(φ3 − φ2)
hα/2

approximate solution flux at sub-edge midpoints m12 and m23, respectively, while the boxed
expressions are stabilizing diffusive fluxes on the sub-edges. We also have that

γ(φ) = −εα
(
qα coth(qα)− 1

)φ3 − φ1

hα
+ εαhα coth(qα)

(
qα coth(qα)− 1

)φ1 − 2φ2 + φ3

h2
α

Using these expressions sub-edge fluxes assume the forms

F12(φ) = f12 + εαhα
(

coth(qα)− 1
)(

qα coth(qα)− 1
)φ1 − 2φ2 + φ3

h2
α

,

and
F23(φ) = f23 + εαhα

(
coth(qα) + 1

)(
qα coth(qα)− 1

)φ1 − 2φ2 + φ3

h2
α

,

respectively. We can further rewrite sub-edge fluxes as

F12(φ) = f12 +
uαh2

α

4
Ψ(−qα) ∆2(φ) and F23(φ) = f23 +

uαh2
α

4
Ψ(qα) ∆2(φ)

respectively, where

Ψ(x) =
1
x
(

coth(x) + 1
)(

x coth(x)− 1
)

is a monotonically increasing function taking values in (0, 2) and

∆2(φ) =
φ1 − 2φ2 + φ3

h2
α

is central difference approximation of φ′′ at segment midpoint p2. Combining these results yields

Fh(φ)|sα = i
((

f12 +
uαh2

α

4
Ψ(−qα)∆2(φ)

) (3
2
− 2s

hα

)
+

(
f23 +

uαh2
α

4
Ψ(qα)∆2(φ)

) (2s
hα
− 1

2

))
= i

(I( f12, f23; s) + Θ(φ, s)
)
,

11



with

I( f12, f23; s) = f12

(3
2
− 2s

hα

)
+ f23

(2s
hα
− 1

2

)
and

Θ(φ, s) =
uαh2

α

4

(
Ψ(−qα)∆2(φ)

(3
2
− 2s

hα

)
+ Ψ(qα)∆2(φ)

(2s
hα
− 1

2

))
.

The first term is the linear interpolant of flux approximations f12 and f23 at sub-edge midpoints.
We now focus attention on Θ(φ, s), which provides the stabilizing effect in the formulation.

To analyze this term, consider the Taylor expansions of φ′(s) about sub-edge midpoints

φ′(s) = φ′(m12)+φ′′(m12)(s−h/4)+O(h2
α) and φ′(s) = φ′(m23)+φ′′(m23)(s−3h/4)+O(h2

α) .

If the mesh is fine enough we can approximate second derivative values at sub-edge midpoints
by the central difference ∆2(φ). Substituting this approximation in the above equations, solving
for ∆2(φ) and multiplying the result by 2/hα yields

∆2(φ)
(

2s
hα
− 1

2

)
=

2
hα

(
φ′(s)− φ′(m12) + O(h2

α)
)

and

∆2(φ)
(

3
2
− 2s

hα

)
=

2
h

(
φ′(m23)− φ′(s) + O(h2

α)
)
.

Using these expressions and neglecting higher order terms we can write Θ(φ, s) as

Θ(φ, s) =
uαhα

2

(
Ψ(−qα)

(
φ′(m23)− φ′(s)

)
+ Ψ(qα)

(
φ′(s)− φ′(m12)

)
+ O(h2

α)
)

=
uαhα

2

(
φ′(s)

(
Ψ(qα)− Ψ(−qα)

)
+ Ψ(−qα)φ′(m23)− Ψ(qα)φ′(m12)

)
This formula is exact for quadratic functions. Taking into account that

Ψ(qα)− Ψ(−qα) =
2
qα

(qα coth qα − 1)

yields the final expression for the stabilizing term along segment sα:

Θ(φ, s) = 4εαφ′(s)(qα coth qα − 1) +
[
Ψ(−qα)φ′(m23)− Ψ(qα)φ′(m12)

]
The first term is a diffusive stabilizing flux. The difference in the square brackets is exponentially
fitted approximation of the second derivative, i.e., it is an anti-diffusive term, which balances the
amount of dissipation introduced by the first term and yields second-order accuracy.

4. Numerical studies

In this section we compare the multi-scale CVFEM (CVFEM-MS) with the classical
streamline-upwind Petrov-Galerkin (SUPG) finite element method [7] and the control volume
finite element method with streamline upwinding (CVFEM-SU) [25, 24]. The latter stabilizes
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(5) by augmenting the nodal flux with a diffusive streamline flux motivated by SUPG weighting
functions. The resulting stabilized flux

FS U(φh) = F(φh) + τ
(
u∇ · (uφh)

)
, (21)

uses the same mesh-dependent stabilization parameter τ as SUPG.
The comparative study in this section employes the original definition [7] of τ on quadrilateral

elements, which requires a notion of directional Péclet numbers. The latter are defined using
segments sξ and sη corresponding to the medians of the sub-elements Ks ∈ K̃h(Ω). Their lengths
hξ = |sξ| and hη = |sη| are the characteristic dimensions of sub-element Ks. The directional
Péclet numbers along the two segments are defined according to

Pξ =
uξhξ
2ε

and Pη =
uηhη
2ε

,

respectively, where uξ = u · tξ and uη = u · tη are the tangential velocities along sξ and sη.
Following [7] we set

τ|Ks
=

hξuξ
2|u|2

(
coth Pξ −

1
Pξ

)
+

hηuη
2|u|2

(
coth Pη −

1
Pη

)
∀Ks ∈ K̃h(Ω). (22)

For definitions and properties of this parameter in more general application and mesh contexts
we refer to [18, 7, 16, 19] and the references therein.

Since the average hs =
(
hξ + hη

)
/2 is a representative measure of the element size, the formula

Ps =
|u|hs

2ε

provides a notion of an elemental Péclet number. We use the largest such number as a measure
for the degree of “advection domination” in a given test problem.

In all examples the computational domain Ω = [0, 1]2. The domain boundary Γ = ΓB ∪ ΓT ∪
ΓL ∪ ΓR, where ΓB, ΓT , ΓL and ΓR are the bottom, top, left and right sides of Ω, respectively,
and Kh(Ω) is partition of Ω into quadrilateral elements. The corresponding sub-element mesh
K̃h(Ω) is defined according to the procedure in Section 1.1. We remind that the multi-scale
flux approximation in the new CVFEM formulation uses second-order Nedelec edge elements
defined with respect to Kh(Ω). Approximation of the scalar φ by all three methods in our study
is by nodal bilinear elements defined on the sub-element mesh K̃h(Ω). Before presenting the
numerical results we briefly discuss the assembly of of the CVFEM-MS linear system.

4.1. Assembly of the CVFEM linear system
The multi-scale CVFEM (9) is equivalent to a a p0 × p0 system of linear algebraic equations

Aφ0 = f for the unknown coefficient vector φ0. To explain the assembly of this matrix it is
convenient to introduce the p-dimensional vector

φ j = (0, . . . , φ j, . . . , 0) ,

where φ j is the element of φ corresponding to a point pj ∈ P(Ω). From (16) it is clear that the
sub-edge fluxes are linear functions of the coefficient vector φ and so,

Fh(φ) =
∑

pj∈P(Ω)

Fh(φ j) +
∑

pj∈P(Γ)

Fh(φ j) .

13



Since φ j = g(pj) for all pj ∈ P(Γ) the second term is a known quantity, which we denote by Fh,g.
This partitioning of the multi-scale flux implies that

Ai j =

∫
∂Ci

Fh(φ j) · ndS and fi =

∫
Ci

f dV −
∫
∂Ci

Fh,g · ndS for pi, pj ∈ P(Ω) . (23)

Let us examine more closely the computation of Ai j. Recall that K(Ci) is the set of all elements
having a non-empty intersection with control volume Ci. As a result,∫

∂Ci

Fh(φ j) · ndS =
∑

Ks∈K(Ci)

∫
∂Ci∩Ks

Fh(φ j) · ndS .

The integrals under the sum only require the elemental restriction Fh|Ks given by

Fh(φ j)|Ks =
∑

ξ∈E(Ks)

Fξ(φ j) ~Wξ,s ,

where ~Wξ,s = ~Wξ|Ks are the elemental restriction of the edge element basis functions. As a result,

Ai j =
∑

Ks∈K(Ci)

∑
ξ∈E(Ks)

Fξ(φ j)
∫
∂Ci∩Ks

~Wξ,s · ndS .

In other words, assembly of the CVFEM algebraic system can be completed without formally
constructing a basis for the global edge element space Eh(Ω). Combined with the fact that Fh

operates on nodal degrees of freedom this means that implementation of the multi-scale CVFEM
does not require global edge data structures.

However, if a global edge data structure is available, one can precompute the coefficients of all
sub-edge fluxes ahead of time and store them in an array indexed by sub-edge number, thereby
improving the efficiency of the assembly process.

4.2. Convergence rates

We estimate the convergence rates of CVFEM-MS, CVFEM-SU and SUPG by combining the
manufactured solution

φ(x) = sin(2πx)2 sin(2πy)

with two different velocity fields and two different diffusivity values. Specifically, we pair the
constant velocity field from (24) and the variable velocity field from (26) with ε = 1× 10−3 and
ε = 1 × 10−5. Substitution of the exact solution, the velocity field, and the diffusion coefficient
into the PDE (1) defines the boundary data and the forcing term. The resulting four examples
allow us to examine the behavior of the new method in a sufficiently representative range of
operating conditions. Convergence rates are estimated by solving (1) on a sequence of uniform
quadrilateral grids with N × N elements. Tables 1–2 summarize the results.

The data in these tables confirms numerically the second order accuracy of the new CVFEM-
MS formulation. It also shows that the method performs consistently and robustly across all
four test cases. In particular, convergence rates with constant and variable velocity fields are
essentially the same. The observed orders of convergence are somewhat higher than expected in
the more diffusive case. However, in the less diffusive case the L2-norm and the H1-seminorm
errors match the theoretical best rates for bilinear elements.
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Table 1: L2-norm and H1-seminorm errors on N × N uniform grids and the corresponding convergence
rates of the multi-scale CVFEM (CVFEM-MS), the streamline-upwind CVFEM (CVFEM-SU) and the
streamline-upwind Petrov-Galerkin finite element method (SUPG). The numbers in the parentheses give
the size of the sub-element mesh. Constant velocity field (24).

Method CVFEM-MS CVFEM-SU SUPG
Error L2 error H1 error L2 error H1 error L2 error H1 error

N max Ps ε = 1 × 10−3

16(32) 15.62 0.1128E-01 0.6921E+00 0.7628E-01 0.9576E+00 0.2974E-02 0.3894E+00
32(64) 7.81 0.2346E-02 0.3188E+00 0.3428E-01 0.4843E+00 0.7080E-03 0.1941E+00

64(128) 3.91 0.4395E-03 0.1331E+00 0.1352E-01 0.2264E+00 0.2014E-03 0.9703E-01
Rate 2.27 1.20 1.34 1.09 1.81 1.00

ε = 1 × 10−5

16(32) 1562.5 0.1357E-01 0.7600E+00 0.8535E-01 0.1075E+01 0.3047E-02 0.3912E+00
32(64) 781.25 0.3287E-02 0.3842E+00 0.4273E-01 0.6043E+00 0.6727E-03 0.1946E+00

64(128) 390.62 0.8054E-03 0.1927E+00 0.2130E-01 0.3569E+00 0.1589E-03 0.9714E-01

Rate 2.06 1.00 1.00 0.76 2.08 1.00

Table 2: L2-norm and H1-seminorm errors on N × N uniform grids and the corresponding convergence
rates of the multi-scale CVFEM (CVFEM-MS), the streamline-upwind CVFEM (CVFEM-SU) and the
streamline-upwind Petrov-Galerkin finite element method (SUPG). The numbers in the parentheses give
the size of the sub-element mesh. Variable velocity field (26).

Method CVFEM-MS CVFEM-SU SUPG
Error L2 error H1 error L2 error H1 error L2 error H1 error

N max Ps ε = 1 × 10−3

16(32) 30.83 0.6066E-02 0.6726E+00 0.4699E-01 0.7578E+00 0.1435E-02 0.3904E+00
32(64) 15.52 0.1267E-02 0.3137E+00 0.2148E-01 0.3534E+00 0.4489E-03 0.1943E+00

64(128) 7.78 0.2656E-03 0.1380E+00 0.8887E-02 0.1542E+00 0.1664E-03 0.9703E-01
Rate 2.28 1.16 1.27 1.19 1.43 1.00

ε = 1 × 10−5

16(32) 3083.2 0.7233E-02 0.7448E+00 0.5185E-01 0.8213E+00 0.1105E-02 0.3927E+00
32(64) 1552.1 0.1733E-02 0.3800E+00 0.2623E-01 0.4157E+00 0.1750E-03 0.1951E+00

64(128) 778.6 0.4250E-03 0.1911E+00 0.1313E-01 0.2082E+00 0.2912E-04 0.9726E-01
Rate 2.07 1.00 0.99 0.99 2.59 1.00

Results in Tables 1–2 confirm the first-order accuracy of the CVFEM-SU formulation. Solu-
tion errors and convergence rates of this method follow the same pattern as those of the CVFEM-
MS., i.e., reducing ε reduces slightly the rates, but changing the velocity does not seem to affect
them.

Finally, our results also reveal some inconsistency in the L2-norm convergence rates of the
SUPG. Somewhat counterintuitively, we see these rates drop for the more diffusive examples,
whereas one would expect the opposite behavior. On the other hand, the H1-seminorm errors of
the SUPG are exceptionally robust and consistent in all four test cases.

4.3. Qualitative studies

This section uses several standard advection tests to complement the convergence study of (9)
by a more qualitative examination of the new method. The test problems are defined by setting
f = 0 and specifying an advective velocity field, a set of Dirichlet boundary conditions for (1),
and a diffusion coefficient ε. The boundary conditions are selected in a manner that produces
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Table 3: Violation of global solution bounds by CVFEM-MS, CVFEM-SU and SUPG solutions on a
64× 64 (128× 128 sub-elements) uniform grid. More diffusive case: ε = 1× 10−3.

Method Exact bounds CVFEM-MS CVFEM-SU SUPG Galerkin

Example (max Ps) min max min max min max min max min max

1 (3.91) 0.0 1.0 0.000 1.001 0.000 1.090 0.000 1.101 0.000 2.042
2 (3.91) 0.0 1.0 -0.001 1.025 -0.001 1.025 -0.002 1.033 -0.001 1.915
3 (7.78) 0.0 1.0 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

Cumulative bound violation in % 2.7% 11.6% 13.6% 195%

solution features such as internal and/or boundary layers. As before we consider a more diffusive
and a less diffusive version of each example, corresponding to ε = 1× 10−3 and ε = 1× 10−5,
respectively.

Example 1. The advective velocity and the boundary conditions are given by

u =

 − sin π/6

cos π/6

 and g =

 1 on ΓB ∪ ΓR

0 on ΓT ∪ ΓL
, (24)

respectively. The solution of (1) develops exponential boundary layers at ΓT ∪ ΓL; see [18].

Example 2:. This example combines the velocity field from Example 1 with the following
boundary condition:

g =

 0 on ΓL ∪ ΓT ∪ (ΓB ∩ {x ≤ 0.5})
1 on ΓR ∪ (ΓB ∩ {x > 0.5})

. (25)

Discontinuity in the boundary data gives rise to an internal layer of width O(
√
ε). Near ΓT the

solution of (25) develops an exponential boundary layer to match the prescribed boundary data
on ΓT ; see [10, Example 3.1.3, p.118].

Example 3:. The advective velocity and the boundary data are given by

u =

 2(2y− 1)(1− (2x− 1)2)

−2(2x− 1)(1− (2y− 1)2)

 and g =

 1 on ΓR

0 on ΓB ∪ ΓT ∪ ΓL
, (26)

respectively. This problem models temperature distribution in a cavity with a “hot” external wall
(ΓR) and is specialization of the double-glazing problem [10, Example 3.1.4, p.119] to the unit
square. The discontinuities at the two corners of the hot wall create boundary layers near its
corners.

Preservation of physical solution bounds. In many practical applications solutions of (1) rep-
resent concentrations of, e.g., electrons and holes as in drift-diffusion models, or certain ionic
species as in simulations of protein channels. In such cases physically meaningful solution val-
ues vary between 0 and 1. Significant violation of these bounds in numerical solutions can lead to
unphysical simulation results especially for coupled multiphysics problems where (1) provides
inputs for other constituent components.
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Table 4: Violation of global solution bounds by CVFEM-MS, CVFEM-SU and SUPG solutions on a
64× 64 (128× 128 sub-elements) uniform grid. Less diffusive case: ε = 1× 10−5.

Method Exact bounds CVFEM-MS CVFEM-SU SUPG Galerkin

Example (max Ps) min max min max min max min max min max

1 (390.62) 0.0 1.0 0.000 1.003 0.000 1.237 0.000 1.257 -0.369 6.560
2 (390.62) 0.0 1.0 -0.051 1.085 -0.028 1.277 -0.046 1.254 -1.544 6.206
3 (778.60) 0.0 1.0 -0.003 1.000 -0.276 1.019 -0.213 1.040 -0.340 1.246

Cumulative bound violation in % 14.2% 83.7% 82.0% 1326.0%

To compare and contrast violation of physical solution bounds by the new CVFEM-MS and
CVFEM-SU and SUPG we solve Examples 1–3 on a 64 × 64 uniform mesh having 128 ×
128 sub-elements. The values of the exact solutions in these examples range between 0 and
1. Since neither one of the three methods is formally monotone, the purpose of the study is
to asses the relative severity of the bounds violation by each method. To this end we report
the minimum and maximum values of the finite element solutions for each example as well as
the cumulative violation of physical bounds in percent for all three examples. We compute the
latter by summing up the absolute values of solution undershoots and overshoots for the three
examples. The unstablized Galerkin method serves as a reference point for this study.

Table 3 presents the data for the more diffusive case ε = 1×10−3. The three stabilized methods
clearly outperform the unstabilized Galerkin formulation, whose cumulative bounds violation is
almost 200%. Interestingly enough, this violation is acquired in Examples 1 and 2, whereas
for Example 3 the three stabilized methods and the unstabilized Galerkin perform equally well.
The three stabilized methods also perform comparably well for Example 2. The most significant
difference in their behavior is observed in Example 1 for which CVFEM-SU and SUPG violate
solution bounds by approximately 10%, whereas the violation of these bounds by CVFEM-MS
is just 0.1%. This example is also the principal contributor to the cumulative bound violations
by CVFEM-SU and SUPG, which stand at 11.6% and 13.6%, respectively, compared with only
2.7% for the CVFEM-SU. The matching behavior of CVFEM-SU and SUPG is not surprising at
all if one recalls that these two methods share a common stabilization mechanism and identical
definitions of the stabilization parameter τ.

Table 4 summarizes results for the less diffusive case ε = 1 × 10−5. As it could be expected,
in this more challenging setting the unstabilizied Galerkin method clearly fails with over 1300%
of cumulative bounds violation. Compared to the more diffusive case the cumulative bounds
violation in CVFEM-MS, CVFEM-SU and SUPG increases by a factor of 5.26, 7.22, and 6.03,
respectively. We also note that violation of physical solution bounds in CVFEM-SU and SUPG
solutions is now essentially equidistributed across the three examples with approximately 25%
per example. In contrast, bounds violation in CVFEM-MS solutions follows the same pattern as
in the more diffusive case. Specifically, its bulk occurs in Example 2 where it reaches 13.6%,
whereas in examples 1 and 2 it is negligible at 0.3%.

Resolution of solution features. The results presented so far suggest that the new CVFEM-MS
formulation handles boundary layers in an exceptionally robust manner yielding almost mono-
tone solutions in both more and less diffusive settings. When the problem has an internal layer,
in the less diffusive setting the solution develops larger overshoots and undershoots, but they still
remain well below the overshoots and undershoots in CVFEM-SU and SUPG. To corroborate
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CVFEM-MS CVFEM-SU SUPG

Figure 5: Solution of Example 1 by CVFEM-MS, CVFEM-SU and SUPG on 64×64 mesh with 128×128
sub-elements. Top row: ε = 1× 10−3. Bottom row: ε = 1× 10−3.

these conclusions we present some plots of the CVFEM-MS, CVFEM-SU and SUPG solutions.
Figure 5 shows surface plots of the CVFEM-MS, CVFEM-SU and SUPG solutions of Exam-

ple 1 for both values of the diffusion parameter ε. The figures clearly show the growth of the
overshoot in the CVFEM-SU and SUPG solutions in the less diffusive case. The CVFEM-MS
solution on the other hand continues to resolve this layer vert accurately

Figures 6–7 show surface and contour plots of the CVFEM-MS, CVFEM-SU and SUPG solu-
tions of Example 2. In particular, Figure 7 suggest about the same level of smearing by all three
methods. In the more diffusive case the three solutions are essentially identical in the ‘eyeball
norm”, which is consistent with the data in Table 3. In the less diffusive case all three methods
exhibit overshoots and undershoots along the internal layer caused by the discontinuity in the
boundary data. However, their size in the CVFEM-MS remains about the same along the layer,
whereas CVFEM-MS and SUPG develop significant overshoots exceeding 25% at the overflow
boundary.

Finally, Figures 8–9 present surface and contour plots of CVFEM-MS, CVFEM-SU and SUPG
solutions of Example 3. In the more diffusive case their solutions are once more virtually undis-
tinguishable, suggesting that the three methods perform equally well. These conclusions are
consistent with the data in Table 3, which shows no violation of physical solution bounds by the
three methods. In the less-diffusive case CVFEM-MS exhibits 0.3% undershoot, which is too
small to be seen in the figures. In contrast, CVFEM-SU and SUPG develop significant, visible
undershoots along the right boundary.

5. Conclusions

We used H(curl) lifting of multi-scale edge fluxes by second-order Nedelec edge elements
to define a new, parameter-free stabilized control volume finite element method for advection-
diffusion equations. Numerical studies of convergence rates using four different manufactured
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Figure 6: Solution of Example 2 by CVFEM-MS, CVFEM-SU and SUPG on 64×64 mesh with 128×128
sub-elements. Top row: ε = 1× 10−3. Bottom row: ε = 1× 10−3.
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Figure 7: Solution of Example 2 by CVFEM-MS, CVFEM-SU and SUPG on 64×64 mesh with 128×128
sub-elements. Top row: ε = 1× 10−3. Bottom row: ε = 1× 10−3.

solution configurations confirm that the new method is second-order accurate. Qualitative nu-
merical studies of the method using standard advection tests reveal that the new formulation is
exceptionally robust and accurate in resolving boundary layers. In particular, for problems hav-
ing only boundary layers, the new method yields practically monotone solutions. Its ability to
resolve internal layers caused by discontinuities in the boundary data is comparable to that of
CVFEM-SU and SUPG and exhibits smaller overshoots and undershoots.
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Figure 8: Solution of Example 3 by CVFEM-MS, CVFEM-SU and SUPG on 64×64 mesh with 128×128
sub-elements. Top row: ε = 1× 10−3. Bottom row: ε = 1× 10−3.
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Figure 9: Solution of Example 3 by CVFEM-MS, CVFEM-SU and SUPG on 64×64 mesh with 128×128
sub-elements. Top row: ε = 1× 10−3. Bottom row: ε = 1× 10−3.
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Appendix A. Second-order Nedelec edge elements of the first-kind on quadrilaterals

This section provides additional details about the edge elements used to define the multi-scale
flux approximation. Consider a reference quadrilateral K̂ = [−1, 1] × [−1, 1] with reference
coordinates (x̂, ŷ) and let Qr,s be the space of all polynomials on K̂ whose degree in the x̂ and ŷ
coordinate directions does not exceed r and s, respectively.

The r-th order reference edge element space of the first kind Er(K̂) = Qr−1,r × Qr,r−1, i.e., it
contains polynomial vector fields V̂ = (v̂1, v̂2) such that v̂1 ∈ Qr−1,r and v̂2 ∈ Qr,r−1; see [20].
Since dim Qr,s = (r + 1)(s + 1) it follows that dim Er(K̂) = 2r(r + 1). This space is optimized for
the approximation of H(curl) vector fields in the sense that it is p-th order accurate with respect
to both the L2 and H(curl) norms.

The multi-scale flux approximation (8) employes the second-order Nedelec space E2(K̂) =

Q1,2 × Q2,1 with dimension dim E2(K̂) = 12. To define a basis set {Ŵα}α for E2(K̂) one needs
to choose a unisolvent set of degrees-of-freedom Λ = {`α(u)}, where `α are linear functionals
acting on a vector field u. A necessary condition for unisolvency is that dim Λ = dim E2(K̂) = 12.
The set Λ must also allow the gluing of the elemental spaces in a way that ensures tangential
continuity of the resulting piecewise polynomial vector fields. The latter is a basic prerequisite
for curl-conforming finite element spaces.

Let {êα} be the set of all reference sub-edges with unit tangents and midpoints t̂α and m̂α,
respectively. In this paper we use a set of interpolatory degrees of freedom given by

`α(u) = u(m̂α) · t̂α (A.1)

that is, Λ comprises the tangential components of u at the 12 sub-edge midpoints. Let

ps0 = (s− s0)

and i = (1, 0), j = (0, 1) be the versors of the reference coordinate system. Using the sub-edge
numbering in Fig. 1, it is not hard to see that {Ŵα}α contains a set of 6 “horizontal”

Ŵ15 = − i
1
2

p1/2(x)p0(y)p1(y); Ŵ52 = i
1
2

p−1/2(x)p0(y)p1(y)

Ŵ89 = i p1/2(x)p−1(y)p1(y); Ŵ96 = − i p−1/2(x)p−1(y)p1(y)

Ŵ47 = − i
1
2

p1/2(x)p−1(y)p0(y); Ŵ73 = i
1
2

p−1/2(x)p−1(y)p0(y)

(A.2)

and a set of 6 “vertical”

Ŵ18 = − j
1
2

p1/2(y)p0(x)p1(x); Ŵ84 = j
1
2

p−1/2(y)p0(x)p1(x)

Ŵ59 = j p1/2(y)p−1(x)p1(x); Ŵ97 = − j p−1/2(y)p−1(x)p1(x)

Ŵ26 = − j
1
2

p1/2(y)p−1(x)p0(x); Ŵ63 = j
1
2

p−1/2(y)p−1(x)p0(x)

(A.3)

basis functions. Contravariant transformation of the reference basis yields an elemental basis set
on every Ks ∈ Kh(Ω). Specifically, let FKs be a map between K̂ and a quadrilateral Ks ∈ Kh(Ω)
with Jacobian JKs (x). Then,

~Wα,s(x) = J−T
Ks

(x) · Ŵα(x)
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The set Λ specified in (A.1) allows to combine the elemental basis functions into global basis
functions ~Wα(x) satisfying (2).

Remark 2. An alternative choice of degrees-of-freedom, which formally requires less regularity,
is to set

`α(u) =

∫
êα

u · t̂α ds,

that is, Λ comprises the circulations of the vector field u along the 12 sub-edges of the reference
element. It is straightforward to check that this choice yields the exact same reference basis
functions (A.2)–(A.3).

Appendix B. Extensions to three-dimensions

Extension of the multi-scale CVFEM formulation to conforming partitions Kh(Ω) of a three-
dimensional region Ω into isoparametric hexahedral elements is straightforward. The surfaces
connecting medians of opposing sides subdivide an element Ks ∈ Kh(Ω) into 8 hexahedral sub-
elements Ksi . The total number of sub-edges on each element is 54 and they form 27 segments.
We construct a pair of sub-edge fluxes on each segment following the procedure described in
Section 2.2, i.e., we specify these fluxes according to (16). Then we use (8) in conjunction with
second-order Nedelec elements of the first kind to expand sub-edge fluxes into an elemental
multi-scale flux approximation.

The corresponding reference element space E2(K̂) = Q1,2,2×Q2,1,2×Q2,2,1 has dimension 54,
i.e., its size matches the number of sub-edges in the reference hexahedral. It is easy to see that
(A.1) is a unisolvent set of degrees-of-freedom. The structure of the resulting basis set is very
similar to that of the quadrilateral reference basis (A.2)–(A.3), except that there is a third set of
“vertical” basis functions corresponding to sub-edges on segments aligned with the reference ẑ
coordinate.
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